Factorial notation is shorthand for multiplying consecutive descending natural numbers.
n! = n(n-1)(n-2) ... 3•2•1
NOTE: 0! = 1
Sample Problems:
A. 1. 3! = 2. 5!= 3. 7! =
B. List down all the possible ways of writing:
1. 3! = 2. 5!= 3. 7! =
A. Formula:
n! = n(n- 1)!
Solutions:
1. 3! =3•2•1 = 6
2. 5! =5•4•3•2•1= 120
3. 7! =7•6•5•4•3•2•1 = 5040
Equivalents
B. 1. n! with n = 3
n! = n(n- 1)!
3! = 3(3 -1)!
3! = 3(2)!
or
3! =3•2!
or
3! =3•2•1!
B. 2. n! with n = 5
n! = n(n- 1)!
5! = 5(5- 1)!
5! = 5(4)!
or
5! =5•4•3!
or
5! =5•4•3•2!
or
3! =5•4•3•2•1!
C. 3. n! = 7! with n = 7
7! = 7(7- 1)!
n! = n(n- 1)!
7! = 7(6)!
7! = 7•6!
or
7! =7•6•5!
or
7! =7•6•5•4!
or
7! =7•6•5•4•3!
or
7! =7•6•5•4•3•2!
or
7! =7•6•5•4•3•2•1!
%20(Video)_20250120_110327_0000.jpg)
0 Comments